Clebsch-Gordan Coefficient Example
 Phys 401

Consider the total angular momentum operator for the Hydrogen atom: $\vec{J}=\vec{L}+\vec{S}$, where \vec{L} is the orbital angular momentum of the electron and \vec{S} is the spin angular momentum of the electron. The eigenfunctions of J^{2} can be expressed as linear combinations of states with different values of m_{ℓ} and m_{s} using the world-famous Clebsch-Gordan coefficients ($\left.\begin{array}{llll}C_{m_{\ell}}^{\ell} & m_{s} & { }_{s} & m_{j}\end{array}\right)$ as:

$$
\left|j m_{j}\right\rangle=\sum_{m_{\ell}+m_{s}=m_{j}} C_{m_{\ell}}^{\ell} \begin{array}{ccc}
s & m_{s} & m_{j} \tag{4.183}
\end{array}\left|\ell m_{\ell}\right\rangle\left|s m_{s}\right\rangle
$$

where the ket $\left|\ell m_{\ell}\right\rangle$ represents the spherical harmonics $Y_{\ell}^{m_{\ell}}$. The C-G coefficient values are given in Table 4.8 on page 179 of Griffiths. Remember that all of the coefficients should appear under a square root, with the minus sign (if any) out front.

Now for an example of how to construct states that are simultaneous eigenfunctions of L^{2}, S^{2}, J^{2} and J_{z}. Take the case again of hydrogen with $\ell=1$ and $\operatorname{spin} s=1 / 2$. How do we find the state with $j=3 / 2$ and $m_{j}=-1 / 2$ in terms of the $Y_{\ell}^{m_{\ell}}$ and spinors? Look at the $1 \times 1 / 2$ CG Table on page 179 . We are led to this table because we are combining an angular momentum vector with $\ell=1$ and spin vector with $s=1 / 2$.

Now look under the column labeled " $\begin{gathered}3 / 2 \\ -1 / 2\end{gathered}$ ". It says:

$$
\begin{aligned}
& \left.\left|\frac{3}{2}-\frac{1}{2}\right\rangle=\sum_{m_{\ell}+m_{s}=-1 / 2} C_{\left.\begin{array}{cc}
1 / 2 & 1 / 2 \\
m_{\ell} & 3 / 2 \\
\hline
\end{array} \right\rvert\, 1 / 2} \quad m_{\ell}\right\rangle\left|\frac{1}{2} m_{s}\right\rangle \\
& \left|\frac{3}{2}-\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}|10\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}|1-1\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle
\end{aligned}
$$

This can be written in a more familiar way in terms of spherical harmonics and spinors as:

$$
\left|\frac{3}{2}-\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}} Y_{1}^{0} \chi_{-}+\sqrt{\frac{1}{3}} Y_{1}^{-1} \chi_{+}
$$

One can move back and forth between the coupled and un-coupled representations using the Clebsch-Gordan table on page 179. Here is the schematic
layout for the CG table for combining two spins (called \vec{S}_{1}, \vec{S}_{2}) to form a total spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}\left(S^{2}\right.$ has eigenvalue $\left.s(s+1) \hbar^{2}\right):$

Un-Coupled
Representation

